
LLNL-CONF-659977

A Global Exception Fault
Tolerance Model for MPI

I. Laguna, T. Gamblin, K. Mohror, M. Schulz, H.
Pritchard, N. Davis

September 8, 2014

ExaMPI
New Orleans, LA, United States
November 16, 2014 through November 16, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Global Exception Fault Tolerance
Model for MPI

Ignacio Laguna†, Todd Gamblin†, Kathryn Mohror†, Martin Schulz†, Howard Pritchard∗, and Nickolas Davis‡
†Lawrence Livermore National Laboratory

∗Los Alamos National Laboratory
‡New Mexico Institute of Mining and Technology

I. INTRODUCTION

Driven both by the anticipated hardware reliability con-
straints for exascale systems, and the desire to use MPI in
a broader application space, there is an ongoing effort to
incorporate fault tolerance constructs into MPI. Several fault-
tolerant models have been proposed for MPI [1], [2], [3],
[4]. However, despite these attempts, and over six years of
effort by the MPI Forum’s [5] Fault Tolerance (FT) work-
ing group, the limited success to date to introduce fault
tolerance constructs into MPI reflects the complexity of the
problem. This complexity stems in part from the fact that
MPI incorporates many concepts besides simple point-to-point
communication protocols, such as collectives, communicators,
message ordering and wildcard receives, collective I/O op-
erations, and one-sided operations. Concepts that MPI lacks
(e.g., connections and timeouts) also complicate the problem.
In addition to the challenges of introducing implementable
fault tolerance constructs, there is the question of usability and
applicability of such constructs in existing production HPC
applications. For example, a run-through or forward recovery
model, in which the application attempts to find a new state
(not necessarily saved previously) from which it can continue
operation, may not be as usable for typical bulk synchronous
HPC applications as a roll-back recovery model, in which the
application is restarted from a previously saved state. Given
the wide range of potential use cases for MPI fault tolerance, it
is likely that a number of approaches will need to be explored.

Recently, the MPI Forum FT working group’s efforts have
coalesced around the User Level Fault Mitigation (ULFM)
proposal [4]. The proposal provides an interface for an appli-
cation to continue using MPI under fail-stop scenarios. MPI
is responsible for reporting process failures to the application,
but the application is responsible, via new MPI functions,
to bring MPI back to a state where it can continue to be
used. ULFM does not provide for an explicit means to restart
failed processes. Several researchers have investigated using
ULFM both for computational kernels [6] and production
applications [7]. These researchers encountered several sig-
nificant shortcomings of ULFM that will likely either limit
its use to a subset of HPC applications, or else require
significant, potentially complex enhancements to ULFM to
support restarting of failed ranks to provide global backward
failure recovery.

The results of these studies, as well as reliability require-
ments for a number of key HPC applications in the exascale
time frame, indicate the need to continue pursuing alternative
MPI fault tolerance models. Additionally, it is anticipated
that technology trends within the exascale time frame, such
as additional options for persistent storage media (e.g., non-
volatile memory (NVM) and low cost SSDs), will have a
significant impact on fault tolerance approaches in HPC. For
example, the availability of NVM on compute nodes of an
exascale system will allow for low cost checktpointing and
fast roll back of bulk synchronous applications in the event of
a process failure—there would typically be no need to reload
checkpointed data from distant, slow parallel file systems.

II. GLOBAL EXCEPTION RECOVERY MODEL

With these considerations in mind, we are investigating a
different model for MPI fault tolerance: a global-exception,
roll-back recovery model. In contrast to ULFM, the basic idea
is that upon detecting a fail-stop failure, MPI reinitializes
itself—it returns MPI to its state prior to returning from
MPI_Init, and restarts the application at an application-
specified restart point. MPI is also responsible for restarting
any failed rank(s). This model implies the presence of a
strongly accurate (no process is reported as failed till it has
actually failed) and strongly complete (all surviving elements
of the runtime eventually know about the failed process) fault
detector within the MPI runtime. This model is not only well
suited to a number of important bulk synchronous, production
HPC applications, but is also applicable to almost any parallel
program model.

A. MPI initialization

The interface defines states to specify under what circum-
stances a process has been initialized. For example, a process
could be in a fresh state (MPI_START_NEW), in a re-started
state due to a failure (MPI_START_RESTARTED), or it has
been added to the existing job (MPI_START_ADDED). A
fault-tolerant MPI program requires calling the MPI_Reinit
routine to specify a pointer for the main entry point after a
failure occurs. Callers of this function should pass command
line arguments, and a function to be invoked each time
this process restarts. Re-initialization states must be passed
according to how the failure occurred and the process started
up. A summary of this interface is shown in Figure 1.

1 /***** Initialization routines *****/
2 typedef enum {
3 MPI START NEW, // Fresh process
4 MPI START RESTARTED, // Process restarted due to a fault
5 MPI START ADDED, // Process is new but added to existingjob
6 } MPI Star t s ta te ;
7
8 // Function pointer type of main entry point
9 typedef vo id (∗MPI Restar t point)

10 (i n t argc , char ∗∗argv , MPI Star t s ta te s ta te) ;
11
12 // Marks the start of a resilient MPI program
13 i n t MPI Reini t (i n t argc , char ∗∗argv ,
14 const MPI Restar t point po i n t) ;
15
16 /***** Cleanup routines *****/
17 typedef enum {
18 MPI CLEANUP ABORT, // Cleanup failed
19 MPI CLEANUP SUCCESS, // Continue rollback
20 } MPI Cleanup code ;
21
22 // An error handler type that cleans up application or libraryresources
23 typedef MPI Cleanup code
24 (∗MPI Cleanup handler)
25 (MPI Star t s ta te s t a r t s t a t e , vo id ∗s ta te) ;
26
27 // Functions to push and pop handlers, which are executed inLIFO order
28 i n t MPI Cleanup handler push (
29 const MPI Cleanup handler handler , vo id ∗s ta te) ;
30 i n t MPI Cleanup handler pop (
31 const MPI Cleanup handler ∗handler , vo id ∗∗s ta te) ;
32
33 /***** Failure notification control *****/
34 typedef enum {
35 MPI SYNCHRONOUS FAULTS,
36 MPI ASYNCHRONOUS FAULTS
37 } MPI Fault mode ;
38
39 // Get and set fault mode
40 i n t MPI Get fault mode (MPI Fault mode ∗mode) ;
41 i n t MPI Set fault mode (MPI Fault mode mode) ;
42
43 // Test for faults synchronously
44 i n t MPI Fault probe () ;
45
46 // Send failure notifications to all processes
47 i n t MPI Fault () ;

Fig. 1. Summary of the MPI global-exception interface.

B. Cleanup handling

Our model incorporates features for use in multi-library
(layered) applications, including the notion of cleanup callback
functions, and the ability to switch between synchronous and
asynchronous process-failure handling. Libraries can push
any number of cleanup callbacks onto a cleanup function
stack—perhaps an initial callback function which handles
cleanup of resources allocated when the library (e.g. HDF)
was initialized by the application, plus additional cleanup
handlers (depending on the call sequence into the library).
This is done using the MPI_Cleanup_handler_push and
MPI_Cleanup_handler_pop function shown in Figure 1.
A cleanup handler can return any of two states: ABORT or
SUCCESS, which specifies whether the cleanup failed (and the
applications ahould abort) or it succeeded (and the application
should continue rollback). We intend that pushing and popping
cleanup handlers should be treated as a lightweight operation
by the MPI implementation.

To work effectively in this model, a library must register
callback functions with sufficient roll-back functionality. This

1 # inc lude <mpi . h>
2
3 MPI Cleanup code cleanup handler (
4 MPI Star t s ta te s t a r t s t a t e , vo id ∗s) ;
5
6 // Real main method of the application (entry point forrollbacks)
7 vo id r e s i l i e n t m a i n (
8 i n t argc , char ∗∗argv ,
9 MPI Star t s ta te s t a r t s t a t e)

10 {
11 // Check if the new world size is acceptable. If it is not,abort.
12 // Figure out what process died, and receover based on that
13 // Load checkpoint if necessary
14 // Enter main computation loop (at appropriate step)
15 // Store checkpoints
16 }
17
18 i n t main (i n t argc , char ∗∗argv)
19 {
20 MPI In i t (& argc , &argv) ;
21
22 // Register the global app cleanup handler
23 MPI Cleanup handler push (cleanup handler , 0) ;
24
25 // Init libraries, which could register their own cleanuphandlers
26 i n i t i a l i z e l i b r a r i e s (MPI COMM WORLD) ;
27
28 // This is the point at which the resilient MPI programstarts
29 MPI Reini t (argc , argv , r e s i l i e n t m a i n) ;
30
31 MPI Final ize () ;
32 }

Fig. 2. Sample fault-tolerant program.

involves library’s functionalities to roll back the library state
to a state that is equivalent its pre-initialization state.

C. Synchronous and Asynchronous fault handling

If there are regions of code in the application or library
that must be protected from asynchronous reinitialization, the
model supports the notion of synchronous failure notification.
Analogous to signal masking, an MPI rank can locally set the
fault detection mode to synchronous. This prevents MPI from
possibly restarting the rank until either it explicitly probes for
faults, or it sets the fault detection mode back to asynchronous
mode. Using the interface on in Figure 1, the application can
set and check the fault mode dynamically. We also provide
functionality to test for faults (MPI_Fault_probe) and to
propagate fault information to alive processes (MPI_Fault).

D. Sample fault-tolerant MPI program

Figure 2 shows a sample fault-tolerant MPI program. Note
that there is a main function, and a resilient_main
function in which the application computation and failure
recovery code is executed. After initializing MPI both the
application and libraries push cleanup handlers into the stack,
which is followed by a call to the resilient_main func-
tion. Note that, in contrast to ULFM, there is no need for
the application to handle local failure information, such as
revoking or shrinking communicators, or determining in what
MPI routine the fault occurred (or it manifested on)—all of
these is transparently managed by MPI. A more descriptive
version of this interface can be found at [8].

III. OPENMPI PROTOTYPE

We developed an initial prototype of the proposed model us-
ing OpenMPI. The focus of this initial study was ascertaining
the level of effort required to perform an MPI reinitialization
procedure, as well as to get some basic performance mea-
surements comparing the cost of a standard checkpoint/restart
procedure to that using a MPI reinitialization approach. Since
one of the major difficulties to implementing the reinitial-
ization procedure involves shutdown and restart of network
related resources, we targeted three different platforms for
initial investigation: a cluster with a Mellanox IB interconnect,
using the OpenMPI ibverbs BTL network interface layer; a
cluster with a Intel/Qlogic IB interconnect, using the OpenMPI
PSM MTL network interface layer; and a Cray XC30 system,
using the OpenMPI uGNI BTL network interface layer.

The MPI_Reinit method was implemented by select-
ing the internal steps of the OpenMPI’s MPI_Init and
MPI_Finalize procedures required to cleanup resources
associated with MPI objects (e.g., constructors, and partially
delivered messages). Not surprisingly, we identified and fixed
a number of procedures in the MPI_Finalize where re-
sources were not being completely released. We also added
routines for canceling interrupted messages, and freeing re-
sources associated with them. It turned out that the OpenMPI
BTL network interfaces proved to be well suited for the MPI
reinitialization procedure, and in and of themselves presented
no significant difficulties. Note that, in this prototype, all
resources associated with BTL’s were torn down and restarted
during MPI reinitialization. A more refined approach would
likely only do selective cleanup to avoid reconnection costs
as a job continued across a reinitialization boundary. Use of
the PSM MTL layer proved much more difficult. Owing to
time constraints further work using the PSM MTL layer was
discontinued in this initial investigation.

Additional work was required in the OpenMPI’s runtime
layer (ORTE) to implement the reinitialization procedure. The
runtime’s group communication layer (used for out-of-band
data exchange and synchronization) was enhanced to support
more general data exchange and synchronization. Before these
modifications, the communication pattern for an MPI job
startup/shutdown was hard-wired into the ORTE layer.

Using this enhanced OpenMPI/ORTE infrastructure, we
modified a highly scalable, molecular dynamics application
(ddcMD) [9], [10] as well as a Lattice Bolzmann transport
code (LBMv3) [11] to use this prototype. To approximate the
asynchronous mode of the proposed method, we modified the
main time-step loops of the applications to explicitly execute
the MPI_Reinit procedure upon receipt of a SIGUSR1
signal. The difference between the time to perform a reinitial-
ization verses a standard job restart with read of the checkpoint
file was significant for the LBMv3 code. The reinitialization
procedure benefits partially from the fact that at least some
portion of the checkpoint data from the last write to the
parallel file system is likely still cached in the kernel’s buffer
cache, since the job was not killed, and the ranks maintain

TABLE I
LBMV3 MPI_REINIT VS FULL RESTART TIME (SECS) ON A CRAY XC30

No. Ranks job restart using MPI_Reinit
64 42 40
128 22 5.9
200 13 4.7

their node locality across the reinitialization boundary. Table I
shows a comparison of the reinitialization times and standard
job restart times for the LBMv3 on a Cray XC30 system
using a strong scaling problem. To simulate the availability
of NVM or local SSDs, the LBMv3 was further modified to
allow for optional writing of checkpoint files to a local ramfs
file systems on the compute nodes. The reduction in time for
a MPI reinitialization restart verses a full job restart using
this approach for storage of checkpoint files was significant
for all job sizes tested. Both for the disk and ramfs based
checkpoint methods, the timing improvements using the MPI
reinitialization approach were significant enough to continue
pursuing implementation of the proposed Global Exception
fault tolerance model in the OpenMPI prototype.

IV. ONGOING WORK AND WORKSHOP PRESENTATION

Next steps in evaluating the viability of a Global Exception
recovery model include incorporating a strongly accurate and
strongly complete fault detector into the ORTE runtime. Such
a detector is necessary in order to repair the ORTE internal
communication network, as well as to determine which ranks
need to be restarted. The ORTE infrastructure for supporting
MPI-2 MPI_Comm_spawn functionality will be enhanced to
restart failed ranks. The remaining elements of the proposed
MPI extensions will also be implemented.

We will further modify the ddcMD and LBMv3 applications
to make full use of the proposed recovery model, including
use of cleanup callbacks, and handling of restarted ranks. The
modified applications will be used for testing the practicality
of the model in bulk synchronous HPC applications.

We will discuss our experience incorporating the proposed
MPI recovery model within the applications, as well as the
effectiveness of the model in the face of fail-stop process
failures. We will present more detailed analysis of timing
comparisons between MPI reinitialization restarts and standard
full job restart from a previous checkpoint.

ACKNOWLEDGMENT

The authors would like to thank Ralph Castain (Intel) for
changes to the Open Runtime (ORTE) to support this effort.
The authors also thank Nathan Hjelm (Los Alamos National
Lab) for his help with the LBMv3 application.

REFERENCES

[1] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” in Recent advances in
parallel virtual machine and message passing interface. Springer, 2000,
pp. 346–353.

[2] J. Hursey, R. L. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard, and
D. G. Solt, “Run-through stabilization: An MPI proposal for process
fault tolerance,” in Recent Advances in the Message Passing Interface.
Springer, 2011, pp. 329–332.

[3] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“A Checkpoint-on-Failure protocol for algorithm-based recovery in
standard MPI,” in Euro-Par 2012 Parallel Processing. Springer, 2012,
pp. 477–488.

[4] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in mpi,”
Computing, vol. 95, no. 12, pp. 1171–1184, 2013.

[5] “MPI Forum Standardization Effort,” http://meetings.mpi-form.org.
[6] M. Ali and P. Strazdins, “Application level fault recovery: Using

fault-tolerant open mpi in a pde solver,” in Proceedings of the 27th
IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (IPDPSW14), PDSEC, 2014.

[7] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B. R. de Supinski,
“Evaluating user-level fault tolerance for mpi applications,” in Proceed-
ings of the 21st European MPI Users’ Group Meeting. ACM, 2014,
p. 57.

[8] Todd Gamblin, “MPI Resilience,” https://github.com/tgamblin/
mpi-resilience.

[9] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R.
de Supinski, J. Sexton, and J. A. Gunnels, “Simulating solidification in
metals at high pressure: The drive to petascale computing,” in Journal
of Physics: Conference Series, vol. 46, no. 1. IOP Publishing, 2006,
p. 254.

[10] J. N. Glosli, D. F. Richards, K. Caspersen, R. Rudd, J. A. Gunnels,
and F. H. Streitz, “Extending stability beyond cpu millennium: a
micron-scale atomistic simulation of kelvin-helmholtz instability,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing.
ACM, 2007, p. 58.

[11] X. He and L.-S. Luo, “Theory of the lattice boltzmann method:
From the boltzmann equation to the lattice boltzmann equation,”
Phys. Rev. E, vol. 56, pp. 6811–6817, Dec 1997. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.56.6811

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

